защита от коррозии - translation to English
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

защита от коррозии - translation to English

АКЗ; Акз; Антикоррозионные покрытия; Защита от коррозии; Антикоррозия; Антикоррозийное покрытие
  • Покраска корабля на верфи
  • Забор, подвергающийся коррозии

защита от коррозии         

Protection against (or from) corrosion (or Corrosion protection).

от себя         

• Always use the plotting board with North away from you.

охрана окружающей среды         
  • клеймо]] иконы [[XVII век]]а)
КОМПЛЕКС МЕР, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ОГРАНИЧЕНИЯ ОТРИЦАТЕЛЬНОГО ВЛИЯНИЯ ЧЕЛОВЕЧЕСКОЙ ДЕЯТЕЛЬНОСТИ НА ПРИРОДУ
Энвайронментология; Энвайронменталистика; Энвайронментолистика; Защита природы; Защита окружающей среды; Прикладная экология; Защита дикой природы; Природоохрана; Экологичность

см. тж. меры по охране окружающей среды


Environmental protection.

Definition

Антикоррозионная защита

металлов, комплекс средств защиты металлов и сплавов, металлических изделий и сооружений от коррозии (см. Коррозия металлов). А. з. следует предусматривать на всех стадиях производства и эксплуатации металлических изделий - от проектирования объекта и выплавки металла до транспортировки, хранения готовых изделий, монтажа металлических сооружений и их эксплуатации. Потери от коррозии составляют около 12\% годовой выплавки металла. Коррозия металлов приводит не только к безвозвратным их потерям, но и к преждевременному выходу из строя дорогостоящих и ответственных изделий и сооружений, к нарушению технологических процессов и простоям оборудования. В ряде случаев коррозия вызывает аварии.

Необходимость защиты металлов от коррозии возникла вместе с появлением первых металлических изделий из меди и железа. Для защиты меди ещё в древние времена применялось горячее лужение, растительные масла, коррозионностойкие сплавы (оловянная бронза, латунь), для защиты железных и стальных изделий - полирование, воронение, лужение. В начале 19 в. был открыт электрохимический метод А. з. с помощью протекторов. В середине 19 в. была установлена принципиальная возможность получения металлических покрытий электролитическим способом. Наиболее интенсивно А. з. развивается в 20 в. в связи с изобретением нержавеющих сталей, новых коррозионностойких сплавов, полимерных покрытий и др. Система А. з. определяется условиями эксплуатации и механизмом коррозии металлов (электрохимическим или химическим). По механизму действия все методы А. з. можно разделить на 2 основные группы: электрохимические, оказывающие влияние на потенциал металла или его критического значения; механические, изолирующие металл от воздействия окружающей среды созданием защитной плёнки и покрытий.

К основным методам А. з. относятся: легирование металлов, термообработка, ингибирование окружающей металл среды, деаэрация среды, водоподготовка, защитные покрытия, создание микроклимата и защитной атмосферы. Легированием при электрохимической коррозии достигается перевод металла из активного состояния в пассивное, при этом образуется пассивная плёнка с высокими защитными свойствами. Например, легирование железа хромом позволило перевести железо в устойчивое пассивное состояние и создать целый класс сплавов, называемых нержавеющими сталями (См. Нержавеющая сталь). Дополнительное легирование нержавеющих сталей молибденом устраняет их склонность к точечной коррозии в морских условиях. Легирование титана небольшим количеством палладия резко повышает коррозионную стойкость в агрессивных слабо окислительных средах. Легированием осуществляется также защита сталей и сплавов от структурной коррозии.

Термическая обработка металлов устраняет структурную неоднородность, вызывающую избирательную коррозию, и снимает внутренние напряжения в сплавах, исключая тем самым их склонность к межкристаллитной и точечной коррозии, а также к коррозии под напряжением (например, аустенитных нержавеющих сталей, не содержащих титана и ниобия, алюминиевых сплавов, мартенситных низколегированных и нержавеющих сталей и др.).

Ингибирование среды. Для борьбы с коррозией металлов широко распространены Ингибиторы коррозии, которые в небольших количествах вводятся в агрессивную среду и создают на поверхности металла адсорбционную плёнку, тормозящую электродные процессы и изменяющую электрохимические параметры металлов.

Деаэрация и водоподготовка. Наличие кислорода и агрессивных анионов, особенно хлор-ионов, в воде резко сокращает срок работы энергетических установок вследствие коррозии, которая в ряде случаев вызывает коррозионное растрескивание. За счёт деаэрации и водоподготовки изменяются стационарный потенциал и значения критических потенциалов и критических токов металла.

Широко применяют для А. з. защитные покрытия. Они делятся на металлические (чистые металлы и их сплавы) и неметаллические. В зависимости от потенциала металла покрытия могут быть анодными и катодными по отношению к защитному металлу. Вследствие смещения потенциала анодные покрытия уменьшают или полностью устраняют коррозию основного металла в порах покрытия, т. е. оказывают электрохимическую защиту, в то время как катодные покрытия могут усиливать коррозию основного металла в порах, однако ими часто пользуются, т. к. они повышают физико-механические свойства металла, например износостойкость, твёрдость. Но при этом требуются значительно большие толщины покрытий, а в ряде случаев дополнительная защита. Металлические покрытия разделяются также по способу их получения. Широко распространены, особенно в машиностроении, гальванические покрытия, химические методы осаждения металлов путём их восстановления из водных растворов солей (см. Никелирование), горячий способ нанесения покрытий из расплавов цинка, олова и алюминия. Последний осуществляется главным образом в металлургии на автоматических линиях высокой производительности для горячего цинкования, лужения, алюминирования. Близко к этому методу защиты - термодиффузионное поверхностное легирование сталей хромом, алюминием, кремнием, цинком с целью повышения жаро- и коррозионной стойкости в агрессивных средах (см. Диффузионная металлизация, Алитирование, Силицирование). К термодиффузионным процессам относят также Азотирование. Получает применение осаждение гальванических покрытий из расплавленных солей, при этом совмещается катодное осаждение металлов с термодиффузионными процессами, что позволяет получить покрытия с высокими защитными и адгезионными свойствами. Широко распространено плакирование - термомеханический метод нанесения тонких слоев коррозионностойкого металла. Весьма удобны для крупногабаритных изделий и сооружений металлизационного покрытия (см. Металлизация). Для нанесения тугоплавких металлов применяют плазменное напыление, а также осаждение из газовой фазы. Используется вакуумная металлизация изделий путём конденсации паров металла в вакууме на защищаемую металлическую поверхность. Таким методом могут осаждаться различной толщины слои алюминия, кадмия и других металлов.

Для А. з. применяются также неорганические покрытия, состоящие из окисных, фосфатных, хроматных, фторидных и других сложных неорганических соединений. Неорганические покрытия наносятся химическим и электролитическим методами (см. Оксидирование, Фосфатирование, Пассивирование, Анодирование). Они используются также для повышения защитных свойств гальванических покрытий. К неорганическим покрытиям, получаемым горячим способом, относится эмалирование, широко распространённое в бытовой технике и для защиты металлов от газовой коррозии при высоких температурах. Неметаллические и комбинированные оксидно-металлические покрытия наносятся методом электрофореза (см. Электрофоретические покрытия). При жёстких допусках и посадках и невозможности нанесения покрытий, а также для дополнительной защиты пользуются защитными смазками, однако они эффективны только при периодическом возобновлении.

Для предотвращения коррозии морских судов, подземных и гидротехнических сооружений, а также химической аппаратуры, работающей с агрессивными электропроводными средами, применяют электрохимические методы защиты. Путём катодной или анодной поляризации от постороннего источника тока или присоединением к защищаемой конструкции протекторов потенциал металла смещается до значений, при которых сильно замедляется или полностью прекращается его коррозия.

Для А. з. широко используют различные неметаллические покрытия - лакокрасочные, пластмассовые, каучуковые. Лакокрасочные покрытия экономичны, обладают высокими защитными свойствами, их можно восстанавливать в процессе эксплуатации. Всё больше распространяются пластмассовые покрытия из полиэтилена, полиизобутилена, фторопласта, найлона, поливинилхлорида и др., обладающих высокой водо-, кислото- и щёлочестойкостью. Многие пластмассы используют как футеровочный материал для химических аппаратов и гальванических ванн (винипласт, фаолит и др.). Для защиты деталей радиоаппаратуры служат заливочные полимерные компаунды. Эффективно защищают от действия кислот и др. реагентов покрытия на основе каучука (гуммирование).

Подземные сооружения, например трубопроводы, защищают от коррозии битумами и асфальтами, а также полимерными лентами и эмалями; от блуждающих токов - с помощью дренажа, который отводит их от конструкции.

При длительном хранении и транспортировании металлические изделия и запасные части подвергают консервации (См. Консервация). При горячей и термической обработке легко окисляющихся металлов с целью защиты от газовой коррозии используются защитные атмосферы (например, сварка металлов в аргоне, азоте и др.).

В защите конструкций от коррозии большую роль играет рациональное конструирование. С его помощью устраняют уязвимые для коррозии места конструкций (щели, зазоры, застойные места), исключают неблагоприятные контакты разнородных металлов, усиливающих коррозию, или производят их изоляцию, устраняют ударное воздействие среды на конструкцию и др.

Лит.: Акимов Г. В., Основы учения о коррозии и защите металлов, М., 1946; Дринберг А. Я., Гуревич Е. С., Тихомиров А. В., Технология неметаллических покрытий, Л., 1957; Томашов Н. Д., Теория коррозии и защиты металлов, М., 1959; Органические защитные покрытия, пер. с англ., М.-Л., 1959; Батраков В. П., Теоретические основы коррозии и защиты металлов в агрессивных средах, в сборнике: Коррозия и защита металлов, М., 1962; Металловедение и термическая обработка стали. Справочник, т. 2, М., 1962; Апплгейт Л. М., Катодная защита, пер. с англ., М., 1963; Любимов Б. В., Специальные защитные покрытия в машиностроении, 2 изд., М.-Л., 1965; Лайнер В. И., Современная гальванотехника, М., 1967; Кречмар Э., Напыление металлов, керамики и пластмасс, пер. с нем., М., 1968; Клинов И. Я., Коррозия химической аппаратуры и коррозионностойкие материалы, М., 1967; Burns R. М., Bradley W. W., Protective coatings for metals, N. Y., 1967.

В. П. Батраков.

Wikipedia

Антикоррозионная защита

Антикоррозионная защита — нанесение на поверхность защищаемых конструкций слоёв защитных покрытий на основе органических и неорганических материалов, в частности, лакокрасочных материалов, металлов и сплавов.

Examples of use of защита от коррозии
1. Основой лота №7 была "Активная защита от коррозии на водопровод в районе Рижского вокзала", на улице Трифоновской.
2. Проблемы рынка" и семинар "Защита от коррозии: покрытия и технологии". "Весенний мебельный салон на Красной Пресне-2007" в эти же дни пройдет в павильоне №1, где будут представлены отдельные образцы и мебельные гарнитуры, специализированная мебель, материалы и оборудование для производства мебели от ведущих российских и зарубежных изготовителей.
What is the English for защита от коррозии? Translation of &#39защита от коррозии&#39 to English